<

추정

\[ E(X|\theta) = \int xf(x|\theta)dx \]

추정량(estimator)

추정량이 갖추었으면 하는 특징

  1. 편향이 없을 것 (unbiasedness): 불편성(unbiasedness)

\[E(\hat{\theta})=\theta\]

\[E(\bar{X})=\mu\quad E(X_i)=\mu, \quad i.i.d\]

\[E(S^2)=\sigma^2\quad V(X_i)=\sigma^2\quad i.i.d\] (교과서 pp. 189-190)

  1. 분산이 작을것 (efficiency): 유효성/효율성

\[ V(\hat{\theta_1}) < V(\hat{\theta_2})\]

x=seq(-3,3,by=0.01)
y=dnorm(x)
y.1=dnorm(x,sd=sqrt(1/3))
y.2=dnorm(x,sd=sqrt(7/18))
pnorm(0.1,sd=sqrt(1/3))-pnorm(-0.1,sd=sqrt(1/3))
## [1] 0.1375098
pnorm(0.1,sd=sqrt(7/18))-pnorm(-0.1,sd=sqrt(7/18))
## [1] 0.1273999
plot(x,y)

plot(x,y,type="l")

plot(x,y,type="l",ylim=c(0,0.8),axes=F,ylab="",lwd=3,col="yellow")
lines(x,y.1,col="red",lwd=3)
lines(x,y.2,col="green",lty=2,lwd=3)
axis(1)

\[\bar{Y}_1=(Y_1 +Y_2+ Y_3)/3,\qquad \bar{Y}_2=(Y_1+2Y_2+3Y_3)/6 \] \[ E(\bar{Y}_1)=E(Y)\] \[E(\bar{Y}_2)=\frac{E(Y_1)+2E(Y_2)+3E(Y_3)}{6}=(6/6)E(Y)=E(Y)\]

options(digits=3)
set.seed(1)
mean.seq=function(x){
  n=length(x)
  sum=0
  n2=0
  for (i in 1:n){
    newx=i*x[i]
    sum=sum+newx
    n2=n2+i
  }
  return(sum/n2)
}
mean.seq2=function(x){
  n=length(x)
  sum(x*(1:n))/sum(1:n)
}
y1=rep(NA,1000)
y2=rep(NA,1000)

for (i in 1:1000){
  smp=rnorm(3)
  y1[i]=mean(smp)
  y2[i]=mean.seq(smp)
}
n1=length(y1[(y1>-0.1)&(y1<0.1)])
n2=length(y2[(y2>-0.1)&(y2<0.1)])

data.frame(mean=mean(y1),var=var(y1),n=n1)
##      mean  var   n
## 1 -0.0042 0.36 134
data.frame(mean=mean(y2),var=var(y2),n=n1)
##      mean   var   n
## 1 -0.0113 0.427 134
par(mfrow=c(1,2))
hist(y1,prob=T,xlim=c(-2,2),ylim=c(0,0.65),main="barY1",xlab="",col="orange",border="red")
hist(y2,prob=T,xlim=c(-2,2),ylim=c(0,0.65),main="barY2",xlab="",col="orange",border="red")

  1. ’수렴’할 것: 일치성(consistency)

\[\lim_{n\rightarrow\inf} P(|\hat{\theta}-\theta|\ge \epsilon) =0 \]

표준오차(Standard error)

추정량의 표준편차

\[ \sqrt{V(\hat{\theta})} =\sqrt{E(\hat{\theta}-E(\hat{\theta}))^2}\]

\(\hat{\theta}\) 가 불편추정량이면

\[ = \sqrt {E(\hat{\theta}-\theta)^2} \]

그런데 이 값은 모집단의 모수에 의해 결정되는 경우가 많아서 관측이 불가능한 경우가 대부분이다. 예를 들면

\[ \hat{\theta}=\bar{X} \] \[\sqrt{E(\hat{\theta}-E(\hat{\theta}))^2}=\sqrt {E(\bar{X}-\mu)^2}=\sqrt{\sigma^2/N}=\sigma/\sqrt{N}\]

여기서 \(\sigma\)는 관찰이 불가능하다. 따라서 이 \(\sigma\) 대신 그 불편추정량인 표본표준편차 \(s\)를 사용하는 다음 추정량이 \(\bar{X}\)의 표준오차가 된다.

\[ SE(\bar{X}) =s/\sqrt{N}\qquad s=\sqrt{\frac{\sum_i X_i-\bar{X}}{N-1}}\] \(SE(\hat{\theta})\)\(\hat{SE(\theta)}\) 의 구분은 무의미하다. \(SE(\hat{\theta})\)가 실제 관측이 안 되는 값이기 때문에.

모비율의 점추정

  1. 추정량 : 출현빈도

\[ \hat {p} =\frac{X}{n}\] \[ E(\hat{p})=E(X)/n =np/n=p\] \[ \sqrt{V(X/n)} =\sqrt{V(X)/n^2}=\sqrt{np(1-p)/n^2}=\sqrt{p(1-p)/n}\] \[SE(\hat{p})=\sqrt{\hat{p}(1-\hat{p})/n}\]

library(prob)
n=3
smps.all=rolldie(n)
str(smps.all)
## 'data.frame':    216 obs. of  3 variables:
##  $ X1: int  1 2 3 4 5 6 1 2 3 4 ...
##  $ X2: int  1 1 1 1 1 1 2 2 2 2 ...
##  $ X3: int  1 1 1 1 1 1 1 1 1 1 ...
head(smps.all,n=3)
##   X1 X2 X3
## 1  1  1  1
## 2  2  1  1
## 3  3  1  1
is.even=function(x) return(!x%%2)# 나머지 (2로 나누어 나머지가 0이면 TRUE)
var.p=function(x){
  return(sum((x-mean(x))^2)/(length(x)))
}

p.even=function(x, s.size=3){
  return(sum(is.even(x))/s.size)
}

phat=apply(smps.all,1,p.even)
mean(phat)
## [1] 0.5
p.p=0.5
var.p(phat)
## [1] 0.0833
p.p*(1-p.p)/3
## [1] 0.0833
sqrt(var.p(phat))# 표준오차
## [1] 0.289

구간추정

  1. 정의 : 모수 \(\theta\)에 대한 \(100(1-\alpha)\)% 신뢰구간

\[ P(\theta_L < \theta < \theta_U) = 1- \alpha\] \(\alpha=0.01\) : 99% 신뢰구간 \(\alpha=0.05\) : 95% 신뢰구간

  1. 의미: 100번 반복해서 표본을 추출하면 \(100(1-\alpha)\) 번 정도는 \(\theta\) 가 구간 안에 들어감

  2. 모평균 구간 추정 3.1. 분산을 알 경우 (정규분포) \[ X_i \sim N(\mu,\sigma^2) \] \[ Z=\frac{\bar{X}-\mu}{\sigma/\sqrt{N}}\sim N(0,1)\] \[ P(-z_{\alpha/2}<Z<z_{\alpha/2})=1-\alpha =0.95\] 좌우 대칭을 이용하면 \[ 2\times P(Z<-z_{\alpha/2})=0.05\]

\[ P(Z<-z_{\alpha/2})=0.025\rightarrow z_{\alpha/2}=1.96\]

\[P\left[-1.96 <\frac{\bar{X}-\mu}{\sigma/\sqrt{N}}<1.96\right] = 95\%\]

\[P\left[\bar{X}-1.96\sigma/\sqrt{N} <\mu<\bar{X}+1.96\sigma/\sqrt{N}\right] = 95\%\]

신뢰구간

\[ (\bar{X}-1.96\sigma/\sqrt{N}, \bar{X}+1.96\sigma/\sqrt{N})\]

set.seed(9)
n=10
x=1:100
y=seq(-3,3,by=0.01)

smps=matrix(rnorm(n*length(x)),ncol=n)
xbar=apply(smps,1,mean)
se=1/sqrt(10)
alpha=0.05
z=qnorm(1-alpha/2)
ll=xbar-z*se
ul=xbar+z*se

plot(y,type="n",xlab="trial",ylab="z",main="95% CI", xlim=c(1,100),ylim=c(-1.5, 1.5),cex.lab=1.8)
abline(h=0,col="red",lty=2)
l.c=rep(NA,length(x))
l.c=ifelse(ll*ul>0,"red","black")
arrows(1:length(x),ll,1:length(x),ul,code=3,angle=90,length=0.02,col=l.c,lwd=1.5)

3.2. 분산을 모를 경우 (t 분포)

\[ T=\frac{\bar{X}-\mu}{s/\sqrt{N}}\sim t(N-1)\]

\[ P(-t_{\alpha/2,n-1}<T<t_{\alpha/2,n-1})=1-\alpha =0.95\] 좌우 대칭을 이용하면 \[ 2\times P(T<-t_{\alpha/2,n-1})=0.05\] \[ P(T<-t_{\alpha/2,n-1})=0.025\rightarrow t_{\alpha/2,n-1}=2.78\qquad (N=5) \]

\[P\left[\bar{X}-2.78\times s/\sqrt{N} <\mu<\bar{X}+2.78\times s/\sqrt{N}\right] = 95\%\]

신뢰구간

\[ (\bar{X}-2.78s/\sqrt{N}, \bar{X}+2.78s/\sqrt{N})\]

ci.t=function(x,alpha=0.05){
  n=length(x)
  m=mean(x)
  s=sd(x)
  t=-qt((alpha/2),df=n-1)
  #t=-qt(1-(alpha/2),df=n-1)
  ll=m-t*(s/sqrt(n))
  ul=m+t*(s/sqrt(n))
  ci=c(1-alpha,ll,m,ul)
  names(ci)=c("Confidence level","Lower limit","Mean","Upper limit")
  return(ci)
}

smp=c(520,498,481,512,515,542,520,518,527,526)
ci.t(smp)
## Confidence level      Lower limit             Mean      Upper limit 
##             0.95           503.98           515.90           527.82
ci.t(smp,0.1)
## Confidence level      Lower limit             Mean      Upper limit 
##              0.9            506.2            515.9            525.6

6장 준비